
Scaling properties of a percolation model with long-range correlations

Muhammad Sahimi1,2 and Sumit Mukhopadhyay1,*
1Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211

2Hochstleistungsrechenzentrum, Kernforschungsanlage Ju¨lich, D-52425 Ju¨lich 1, Germany
~Received 27 March 1995; revised manuscript received 17 May 1996!

We present the results of Monte Carlo simulations of a percolation model with long-range correlations in
two and three dimensions. The correlations are generated by a fractional Brownian motion. The nature of the
percolation transition in this model is discussed. The percolation thresholds and the critical exponents of the
model are calculated. The exponents are found to be mostlynonuniversaland dependent on a parameter that
characterizes the nature of the correlations. Some possible applications of the model are discussed in detail,
including flow in field-scaleporous media~with megascopicdisorder! with a given permeability distribution,
and estimating their effective permeability, and transport and dispersion in geological formations and explain-
ing the anomalous and nonuniversal behavior of the dispersivity that has been observed in many field-scale
experiments, in terms of the nonuniversal properties of our model.@S1063-651X~96!08109-3#

PACS number~s!: 47.55.Mh, 64.60.Ak

I. INTRODUCTION

Percolation theory has become a powerful, much-used
tool for investigating various phenomena in disordered me-
dia @1#. Its popularity stems from its relevance to a wide
variety of phenomena@2#, and from the fact that despite the
simplicity of its underlying concepts, it leads to nontrivial
critical phenomena. A partial list of its applications includes
various flow phenomena in porous media and rock@3,4#,
transport, mechanical and rheological properties of disor-
dered materials such as polymers, glasses, and powders, hop-
ping conduction in amorphous semiconductors, frequency-
dependent conductivity in superionic conductors, reaction,
diffusion, and deposition in porous structures, and even
earthquakes and some biological systems.

However, most percolation processes that have been stud-
ied so far deal with phenomena in which there is either no
correlation, or only a short-range correlation. The nature of
disorder in many important physical phenomena and media
is not, however, completely random, and usually there are
correlations of a given extent. For example, in packing of
solid particles, whose mechanical properties are described by
elastic percolation networks, there are usually some short-
range correlations. However, the scaling properties of perco-
lation with finite-range correlations are the same as those of
random percolation, if the length scale of interest is larger
than the correlation length. Moreover, if the correlation func-
tion decays faster thanr2d, wherer is the distance between
two points andd is the dimensionality of the system, then the
critical properties of the systems are identical with those of
random percolation@1#. In some other cases, e.g., field-scale
porous media and aquifers, there are long-range correlations
~see below!, by which we mean correlations whose extent is
comparable with the linear size of the system. In the past
there have been a few papers that dealt with percolation with

long-range correlations. The goal of this paper is to investi-
gate various scaling properties of one such percolation
model, recently introduced by one of us@5#, and point out its
possible applications. But, let us first summarize the most
important scaling properties of percolation networks that we
wish to study in this paper.

Consider a two- or three-dimensional percolation network
in which a fractionp of the bonds are conducting~we refer
to such bonds as the open bonds!, and the rest are insulating
~their conductance is zero!. Near the percolation thresholdpc
one can define a correlation lengthjp which diverges aspc is
approached according to the power lawjp;(p2pc)

2n. The
correlation length is the length scale for macroscopic homo-
geneity of the system. For any length scaleL@jp the system
is macroscopically homogeneous, while for length scales
L!jp the system is a fractal and statistically self-similar
object. Nearpc the accessible fractionXA of conducting
bonds, i.e., those that are in the sample-spanning cluster,
vanishes asXA;(p2pc)

b. For any length scaleL!jp the
sample-spanning cluster is a fractal object with a fractal di-
mension Dp5d2b/n for a d-dimensional system. The
sample-spanning cluster can be divided into two parts: the
dead-end part that carries no flow or current, and theback-
bone, which is the multiply connected part of the cluster.
Nearpc the fractionXB of the conducting bonds that are in
the backbone vanishes asXB;(p2pc)

bB, while for any
length scaleL!jp the backbone is a fractal object with a
fractal dimensionDB5d2bB/n. Similarly, the overall con-
ductivity G of the network vanishes aspc is approached
according to the power lawG;(p2pc)

t. If the open bonds
of the network represent the pores or channels of a porous
medium through which a fluid can flow, a hydrodynamic
permeabilityK can be defined that nearpc obeys the scaling
law

K;~p2pc!
e. ~1!

Currently accepted values of these critical exponents aren5
4
3 and 0.88,b5 5

36 and 0.41,bB.0.48 and 0.99,Dp5
91
48 and

2.52, andDB.1.64 and 1.87 ford52 and 3, respectively.
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For most conductance and permeability distributions one has
t5e.1.3 and 2 ford52 and 3, respectively. However, there
are certain cases for whichtÞe. Throughout this paper we
treate as a distinct exponent.

The plan of this paper is as follows. In the next section we
describe the percolation model that we study in this paper.
We then present and discuss the results of extensive Monte
Carlo simulations of the model. The paper is summarized in
the last section, where we discuss possible applications of
the model.

II. PERCOLATION
WITH LONG-RANGE CORRELATIONS

One of the first studies of correlated percolation was car-
ried out by Coniglioet al. @6#. However, the range of corre-
lations in their model was finite. The first model of percola-
tion with long-range correlations was probably proposed by
Weinrib and Halperin@7# and Weinrib@8#. In their model, a
site percolation problem was defined by site-occupation vari-
ablessi at the sites$ i % of a regular lattice of dimensionality
d, which take on the values 1 and 0 corresponding to occu-
pied and vacant sites, respectively. For the corresponding
bond percolation problem, the$ i % label bonds. The system is
characterized by the site-occupation probability

p5^si&, ~2!

and the site-occupation correlation function

C~ ur i2r j u!5^sisj&2^si&^sj&, ~3!

where ^ & is an average over all realizations of the random
variables$si%. For a statistically isotropic system, the corre-
lation function depends only on the distanceur i2r j u between
two sites at positionsr i and r j . For example, for random
percolationC(r )5p(12p)d r ,0. Weinrib and Halperin@7#
and Weinrib@8# considered the case for which

C~r !;r2l, ~4!

wherel,d. For l>d, the critical properties of the system
are identical with those of random percolation, and thus are
not of interest to us. Weinrib@8# showed that forl,d

n5
2

l
. ~5!

Other critical exponents of this percolation model were also
calculated to linear order in terms ofe562d and d542l.
Isichenko and Kalda@9# argued that for 2/n.l.0 the critical
exponentb should be the same as that of random percola-
tion. However, this does not agree with field-theoretic results
of Weinrib @8#.

Prakashet al. @10# considered a slightly different percola-
tion model in which the correlation functionC(r ), defined
by

C~r !5^u~r 8!u~r1r 8!&, ~6!

where u(r ) is a random variable obeying the distribution
with long-range correlations, and denotes an average over all
values ofr 8, in a d-dimensional system is given by

C~r !;r2~d2z!, ~7!

where22<z<2 is a parameter of their model, such that
0<z<2 represents positive correlations, while22<z<0 cor-
responds to negative correlations. Prakashet al. @10# studied
this model in two dimensions~2D! and showed that for
z<0.5 there is no change inn from the uncorrelated value
n54

3. For 0.5<z<1.0 their results were consistent with
Weinrib’s results@8# @see Eq.~5!#

n5
2

d2z
, ~8!

but for z>1.0 their estimatedn’s were consistently lower
than the predictions of Eq.~5!. Moreover, the fractal dimen-
sionDp of the sample-spanning cluster was found to be un-
altered by the correlations. Schmittbuhl, Vilotte, and Roux
@11# studied simple models of percolation with long-range
correlations using self-affine surfaces.

We now describe our percolation model with long-range
correlations. Consider a stochastic processBH~r !, called
fractional Brownian motion~fBm! @12#, with the following
properties:

^BH~r !2BH~r0!&50, ~9!

^@BH~r !2BH~r0!#
2&;ur2r0u2H, ~10!

where r5(x,y,z) and r05(x0 ,y0 ,z0) are two arbitrary
points, andH is called the Hurst exponent. A remarkable
property of fBm is that it generates correlations whose extent
is infinite. For example, consider the one-dimensional case
and define an incremental correlation functionCi(x) of the
‘‘future’’ increments BH(x) with the ‘‘past’’ increments
BH(2x) by ~the meaning of past and future becomes clear if
we replacex with a time variable!

Ci~x!5
^2BH~2x!BH~x!&

^BH~x!2&
, ~11!

then one finds thatCi(x)522H2121, independentof r .
Moreover, the type of correlations can be tuned by varying
H. If H.1

2, thenCi(x).0 and fBm displayspersistence, i.e.,
a trend~for example, a high or low value! at x is likely to be
followed by a similar trend atx1Dx. If H, 1

2, thenCi(x),0
and fBm generatesantipersistence, i.e., a trend atx is not
likely to be followed by a similar trend atx1Dx. For H5
1
2 the trace of fBm is similar to that of a random walk, and
the incrementsare uncorrelated. ForH521

2 the process is
equivalent to awhite noiseand is completely random. Frac-
tional Brownian motion has found many applications.

A convenient way of representing a distribution function
is through its spectral densityS~v!, the Fourier transform of
its variance. For example, for ad-dimensional fBm it can be
shown that

S~v!;
1

~( i51
d v i

2!H1d/2 , ~12!

where v5~v1,...,vd!. This spectral representation also al-
lows us to introduce a cutoff length scalel co51/Af co such
that
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S~v, f co!;
1

~ f co1( i51
d v i

2!H1d/2 . ~13!

This cutoff length scale allows us to control the scale over
which the spatial properties of a system are correlated~or
anticorrelated!. Hence for length scalesl ,l co they preserve
their correlations~anticorrelations!, but for l .l co they be-
come random and uncorrelated. Ind dimensions, the limit
H52d/2 represents a white-noise process which is com-
pletely random. The spectral density representation also pro-
vides a convenient method for generating a sequence of
numbers that obey a distribution with long-range correla-
tions, using a fast Fourier transform technique. For example,
in the case of fBm, one first generates random numbers, uni-
formly distributed in~0,1!, and assigns them to the sites or
bonds of ad-dimensional network. The Fourier transform of
the resultingd-dimensional array of the numbers is then-
calculated numerically. The Fourier-transformed numbers
are then multiplied byAS(v), and the results are then in-
verse Fourier transformed back into the real space. The num-
bers so obtained obey a spatial distribution with the desired
long-range correlations. To avoid the problem associated
with the periodicity of the numbers arising as a result of their
Fourier transforming, one has to generate the array for a
much larger network than the actual size that is to be used in
the simulations, and use the central part of the network. In
the discussion of our results, when we refer to the size of a
network, we mean the size of its central part that we used in
our percolation simulations. An alternative algorithm for
simulating fBm, based on its integral representation, is de-
scribed by Rambaldi and Pinazza@13#. The spectral repre-
sentation of distribution functions has been discussed in de-
tail by Hardy and Beier@14#.

A fBm was used by Sahimi@5# for generating a percola-
tion model with long-range correlations. The motivation for
his work was provided by the work of Hewett and Behrens
@15,16#, who analyzed the permeability distributions and po-
rosity logs of heterogeneous rock formations at large length
scales~of order of hundreds of meters!. He argued that the
porosity distribution follows a fractional Gaussian noise
~fGn!, whose spectral density in, e.g., 1D, is given by

S~v!;
1

v2H21 . ~14!

It can be shown that fGn corresponds, roughly speaking, to
the derivative of fBm. Vertical porosity logs analyzed by
Hewett @15# produced valuesH.0.5, indicating the exist-
ence of long-range positive correlations. The exponentH, so
obtained, was subsequently used for generating areal hetero-
geneity maps by simulating fBm statistics.

We have reanalyzed@17# Hewett’s data, as well as exten-
sive porosity and permeability data from several oil fields in
southwest Iran. By using various methods of analyzing the
data, such as the standard rescaled-range~R/S! method, the
covariance technique, and wavelet analysis, we have reached
the following conclusions.~1! The porosity data do indeed
show long-range correlations, as found by Hewett and oth-
ers, and can be well represented by a fBm. However, unlike
the findings of most of the previous authors@14–16# who
found thatH.0.5, i.e., positive long-range correlations, we

have found that 0,H,0.3, indicating negative long-range
correlations. We have shown that@17–19# the reason for the
difference between our results and those of the previous au-
thors is that the standard~R/S! method that was used in most
of the previous studies is fundamentally biased and unreli-
able. By generatingsyntheticcorrelated data over a wide
range ofH, we have shown@19# that the~R/S! methodal-
wayspredicts 0.7,H,0.9,regardlessof the value ofH used
for generating the data.~2! We have found that the perme-
ability data may be represented approximately by fBm with
H,0.2. In a recent paper Neuman@20# has reached a similar
conclusion. Some of our data yielded anegativevalue ofH,
indicating a trend towards the white-noise limit and complete
randomness. Some authors have argued that the permeability
K and porosityf are related exponentially. For example,
Hinrichsenet al. @21# used the following relation between
the permeability and porosity:

K510af1b, ~15!

wherea andb are parameters that they varied in a range that
could highlight contrast in the local permeability distribu-
tion. While Eq.~15! has been used in some field-scale simu-
lation of flow problems, we have not found any indication
for its validity in our own data. One reason for this could be
that Iranian oil fields are mostly carbonate reservoirs, which
are fundamentally different from the sandstone reservoirs
studied so far. Moreover, there cannot be a general relation,
such as Eq.~15!, betweenK andf, since obviously one can
have many porous media with the same porosity but vastly
different permeabilities. In any event, even if we use a fGn
or fBm to generate a correlated porosity field, and then em-
ploy an equation such as~15! to generate the corresponding
permeability field, the resulting permeability field would
contain long-range correlations, and while its properties
would not be similar to one that is generated directly by a
fGn or fBm, for everyH used in generating the porosity field
we would have a corresponding permeability field which
would contain the main ingredient of our model, namely, the
long-range correlations. Thus, based on our own data, we
have used fBm for directly generating a permeability field
with long-range correlations.

Before we describe our correlated percolation model, we
point out that a fBm isnot a stationary stochastic process,
and as a result its correlation function, defined by Eq.~6!,
depends onboth r and r 8, and not justur2r 8u alone. This
distinguishes our correlated percolation model from the pre-
vious models. Our correlated percolation model is as follows
@5#. We first generate a correlated permeability field by as-
signing to each bond of a network a number selected from a
fBm. To construct a percolation network and to preserve the
correlations between the bonds, we remove those bonds that
have been assigned thesmallest~or the largest! permeabili-
ties. The idea is that in rock with a broad distribution of the
permeabilities, a finite volume fraction of the rock should
have a small permeability, and therefore its contribution to
the overall permeability of the system would be small. Al-
ternatively, the removed bonds can be interpreted as the re-
gions that have been plugged as the result of a phenomenon
such as precipitation of solid particles on the surface of their
pores. Such a precipitation process is the result of migration
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of fines~small, electrically charged particles! that occurs dur-
ing water flooding that is used for increasing oil production
from underground reservoirs@22#. Figure 1 shows a square
network in which the permeabilities have been selected ac-
cording to a fBm withH50.8, and 30% of its bonds with the
smallest permeabilities have been removed, whereas Fig. 2
shows the same network in which the same fraction of the
bonds have been removedat random. The striking difference
between the two is due to the positive correlations induced
by the fBm, as a result of which most bonds with large or

small permeabilities are clustered together. Moreover, as we
can see in Fig. 1, the sample-spanning cluster generated by
this model forH. 1

2 does not have many dead-end bonds and
is close to its backbone. This assertion is confirmed by the
numerical results discussed below. Figure 3 shows a square
network in which the permeabilities are distributed according
to a fBm withH50.2, with 30% of the bonds with the small-
est permeabilities removed.

To demonstrate the broadness of the permeability distri-
bution that is generated by a fBm, we present in Fig. 4 the
normalized frequency distribution of the permeabilities gen-
erated by a 2D fBm on a square network. As this figure
indicates, the distribution becomes broader with increasing
H. For H50.7, the permeabilities vary by more than two
orders of magnitude, while forH50.3 they vary over more
than one order of magnitude.

FIG. 1. A correlated percolation cluster withH50.8 in which
30% of the bonds with the lowest permeabilities have been re-
moved. Lightest and darkest areas correspond to the regions with
the highest and lowest permeabilities, respectively.

FIG. 2. The same as in Fig. 1, but in which 30% of the bonds
have been removedat random.

FIG. 3. A correlated percolation cluster withH50.2 in which
30% of the bonds with the lowest permeabilities have been re-
moved.

FIG. 4. The permeability distributions that are generated by a
2D fBm for three values of the parameterH.
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To show that, despite the finite size of the networks that
we use in our simulations, the generated permeability fields
preserve the correlations, we present in Fig. 5 the covariance
V(r ) of the fBm. The results are for a 2563256 square net-
work ~the largest 2D size used in our studies!, H50.7, and
three values of the cutofff co. As can be seen, whenf co51,
i.e., when the length scalel co51Af co over which the per-
meabilities are correlated is small~all lengths are measured
in units of a network bond!, the covariance function is essen-
tially constant, since the system is almost completely ran-
dom. For f co51024 the covariance function becomes a con-
stant beyondr5l co5102, whereas forf co50, i.e., when
l co5` and the permeabilities are correlated at all length
scales, the covariance is never a constant. In fact, since for
fBm @see Eq.~10!# V(r );r 2H, the covariance increases with
H.0 and r , and the results shown in Fig. 5 confirm this.
This demonstrates that the finite size of the networks used in
our simulations is large enough and does not distort or de-
stroy the properties of fBm.

We have studied various scaling properties of this perco-
lation model, and have calculated the relevant critical expo-
nents discussed above. In particular, we have studied this
percolation model in the square and simple-cubic networks,
and have calculatedpc , n, bB , Dp , DB , ande for the entire
range21

2<H,1. We have found that, asH approaches2
1
2 the white-noise limit in 1D, the critical exponents already
approach their value for random percolation. Thus negative
values ofH essentially generate distributions that are more
or less random. To calculate the percolation thresholdpc , we
used networks of various linear sizeL, and for eachL we
calculated theeffectivepercolation thresholdpc(L) at which
a given quantity, such as the backbone fractionXB, vanishes.
The results were then averaged over a large number of real-
izations, ranging from a few thousand for small values ofL
to 100 for the largest values ofL. Except for calculating the
correlation function shown in Fig. 5, the largest network

sizes that we used, after deleting the boundary regions of
network to avoid the problems with periodicity of the
Fourier-transformed array of numbers~see above!, were
L5256 and 64 in 2D and 3D, respectively. According to
finite-size scaling theory@23–25#

pc~L !2pc;L21/n, ~16!

so that a fit of the results forpc(L) to Eq.~16! yields bothpc
andn.

To estimate the permeability exponente, we first calcu-
lated the permeability of the networks by applying a unit
pressure gradient to them, and assuming that each bond rep-
resents a region of the pore space through which fluid flow
occurs, whose permeability was selected from a fBm de-
scribed above. Assuming a uniform cross-sectional area for
the bonds, and writing a mass balance for a nodei of the
network,SjQi j50, yields a set of simultaneous equations for
the nodal pressures. HereQi j5ki jDPi j , whereki j is the per-
meability of bondi j andDPi j the pressure drop along it. We
used periodic boundary conditions in the direction~s! perpen-
dicular to the direction of the pressure gradient. This set of
equations was solved by a successive over-relaxation method
in 2D and a conjugate gradient method in 3D. From the
solution of this set, the effective permeability of the network
was calculated, and the result was averaged over many real-
izations of the network. Although there are some efficient
algorithms for identifying the sample-spanning cluster and
its backbone@26#, we used the solution to the pressure equa-
tions to also identify the backbone by finding the dead-end
bonds of the network—those along which the pressure drop
was smaller than a small number~of the order of 1024!—and
removing them from the sample-spanning cluster. The re-
maining bonds constitute the backbone of the network. In
this way, the backbone fractionXB was calculated for a
givenp, the fraction of permeable bonds of the network. The
critical exponente of the permeability can be calculated
from the finite-size scaling theory@23,24#, according to
which at the percolation threshold

K~L,pc!;L2e/n, ~17!

while the backbone fraction obeys the scaling law

XB;L2bB /n, ~18!

and the backbone fractal dimension is calculated by noting
that atpc the number of bondsNB in the backbone is given
by

NB;LDB. ~19!

As is well known, ifL is relatively small, one has to include
the correction-to-scaling terms in Eqs.~16!–~18!, in order to
obtain accurate estimates of the exponents. For example, Eq.
~17! should be rewritten as K(L,pc);L2e/n[a1
1a2f 1(L)1a3f 2(L)], where f 1(L) and f 2(L) are the
correction-to-scaling functions, and thea’s are constant. This
method does require a precise estimate ofpc . However, be-
cause of the large network sizes that we used, we found such
corrections to be small. Alternatively, one can plot
log[K(p)] versus log(p2pc) for p close topc , with the
slope of the resulting straight line beinge. A similar method

FIG. 5. The correlation functionC(r ) on a square network in
which the bond permeabilities are distributed according to a fBm.
The results are, from top to bottom, for the crossover variable
f co51, 1024, and 0.
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can be used for estimatingbB . If accurate data are obtained,
and if large values ofL are used, the two methods yield
essentially identical results. We used both methods in order
to check the accuracy of our results. Moreover, using the
same methods, we carried out extensive simulations in the
limit in which all the long-range correlations vanish and our
percolation model becomes equivalent to random percola-
tion. The agreement between our results in this limit and
those of random percolation confirms the accuracy of our
method~see below!.

III. RESULTS AND DISCUSSION

The first issue we discuss is the effect on our results of the
finite size of the networks used in our simulations since,
strictly speaking, all the scaling laws of percolation are valid
only for infinitely large networks. Although we already
showed that the finite size of the networks does not destroy
the correlations~see Fig. 5!, we also studied how the effec-
tive values ofpc(L) vary withL. This can tell us what linear
size L approximates an ‘‘infinite’’ network. In Fig. 6 we

show the dependence ofpc(L) of the square and simple-
cubic networks on their linear sizeL. As can be seen, asL
increases the effective values ofpc(L) decrease sharply.
However, beyond a minimum sizeLm there is only a very
weak dependence ofpc on L, if any. This minimum size is
aboutLm5150 for the square network andLm530 for the
simple-cubic network. We conclude that if the percolation
and permeability properties of our networks are calculated
with sizesL.Lm , the results will be independent ofL. Since
most of our calculations discussed below are forL5256 ~the
square network! andL564 ~the simple-cubic network!, we
are confident that our results are not affected by finite-size
effects.

In general, we find that correlations~positive or negative!
change the percolation threshold of the system from its value
for random percolation. However, the direction of the change
depends on whether we progressively remove the highest or
the lowest permeable bonds from the network. This can be
seen in Fig. 7 where we present the results for various values
of H. These results were obtained by progressively removing
the bonds with thelowestpermeabilities. Had we removed
the bonds with thehighestpermeabilities, the percolation
threshold pch of the resulting network would be just
pch512pcl ~see below!, wherepcl is the percolation thresh-
old shown in Fig. 7. This figure shows that, asH increases
from its value for the random case,H52 1

2, the percolation
thresholdpcl of the system decreases from its corresponding
values for random percolation which arepc5

1
2 and 0.2488

for the square and simple-cubic network, respectively. The
reason for this is that the low or high permeable regions are
clustered together, so that if, e.g., we remove the bonds with
the lowest permeabilities, clustering of the high-permeability
bonds still generates a sample-spanning cluster, even if the
fraction of the removed bonds is below the percolation
threshold of the network in random percolation. Figure 7
also indicates that only whenH52 1

2 do our results approach
those for random percolation, so that although the incremen-
tal correlation function defined by Eq.~11! vanishes atH5
1
2, the percolation properties of our model become identical
with those of random percolation only atH521

2.
What is the nature of percolation transition in our model?

FIG. 6. The dependence of the effective percolation threshold
pc(L) on the linear sizeL of the square network~top! and the
simple-cubic network~bottom!. The curves are a guide to the eye.

FIG. 7. The dependence of the bond percolation thresholdpc of
the square~circles! and the simple-cubic~triangles! networks onH.
Arrows indicate the corresponding values for random percolation.
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To answer this question we also calculated a few geometrical
exponents of our model. We found thatn depends weakly on
H; this can be seen in Fig. 8, where we show the dependence
of n onH. In 2D, our initial simulations@5# indicated thatDp
may retain its value for random percolation,Dp5

91
48.1.9.

However, estimatingDp accurately in 2D proved to be dif-
ficult. The sample-spanning correlated percolation cluster ap-
pears to be compact, even atpc . Since for random percola-
tion in 2DDp.1.9 is only slightly less than 2, the Euclidean
dimension, it is difficult to distinguishDp.1.9 fromDp52.
The matter becomes clear only in 3D where our calculations
indicate that at least forH.0.5 the sample-spanning cluster
at pc is nearly compact, and in factDp→3 asH→1. For
0,H,0.5 the sample-spanning cluster atpc is less compact,
although it still appears to be very dense. Only whenH→
2 1

2 does Dp approach its value for random percolation,
Dp.2.52. SinceDp5d2b/n, the fact thatDp.d for
0,H,1 means that the critical exponentb is essentially
zero. A zero value ofb may indicate that the percolation
transition on the sample-spanning clusteris first order, in
contrast with random percolation, for which the transition is
second order. However, as our results for the backbone~see
below! indicate, the percolation transition on the backbone is
second order. Thus, unlike the random percolation, there is a
distinct difference between the nature of the percolation tran-
sition on the sample-spanning cluster and its backbone, if
there are long-range correlations of the type that exist in our
model. Note, however, that the hull of the sample-spanning
cluster, i.e., its external surface or perimeter, is very rough,
and is probably fractal with a well-defined fractal dimension,
which may then indicate that the percolation transition on the
hull of the clusters is also second order. Thus our percolation
model offers a rich and intriguing variety of possibilities that
do not exist in the random percolation.

These results can be understood better if we study the
properties of the backbone of the correlated percolation clus-
ter. Figure 9 presents the dependence of the backbone expo-
nentbB onH for d52 and 3, while Fig. 10 shows variations
of the fractal dimensionDB with H, thus confirming that the
percolation transition on the backbone of our model is sec-
ond order. We also found thatDB increases withH, that

DB→d as H→1, and that forH.1
2 the sample-spanning

cluster and its backbone are similar. SinceDp.DB , the re-
sults shown in Fig. 10 confirm the near compactness of the
sample-spanning cluster atpc . However, forH,0 the dif-
ference betweenDp andDB increases, as they approach their
values for random percolation in the limitH521

2, Dp.2.52
andDB.1.87.

Figure 11 compares the permeability of a correlated
square network with that of a random one. These results
were obtained forH50.8. As can be seen, the permeabilities
of the two networks are drastically different. Similar results
were obtained for the simple-cubic network. On the other
hand, if we compare the permeability of a correlated network
with H, 1

2 with that of a random network, the difference
between the two is not as drastic as that shown in Fig. 11.
This is clearly seen in Fig. 12 where we compare the results
for a simple-cubic network withH50.2. These results indi-
cate that, ifH, 1

2 and the fraction of the removed bonds is
not too large, the difference between the permeability of a
correlated network and that of a random one is relatively

FIG. 8. The dependence of the correlation length exponentn on
H in 2D ~circles! and 3D ~triangles!. Arrows indicate the corre-
sponding values for random percolation.

FIG. 9. The dependence of the backbone exponentbB on H in
2D ~circles! and 3D~triangles!. Arrows indicate the corresponding
values for random percolation.

FIG. 10. The dependence of the fractal dimensionDB of the
backbone onH in 2D ~circles! and 3D~triangles!. Arrows indicate
the corresponding values for random percolation.
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small. Only when the percolation threshold is approached
does the difference become large. This is due to the negative
nature of the correlations forH,1

2. In this regime, the clus-
tering of the high- or low-permeability bonds does not occur
very easily, and as a result with decreasingH the distribution
of the permeabilities of the bonds becomes increasingly ran-
dom asH approaches21

2.
Figure 13 shows the logarithmic plot of the permeability

of a 2563256 correlated square network versusp2pc near
the percolation threshold forH50.9. This figure shows that,
similar to random percolation, nearpc the permeability does
follow Eq. ~1!, confirming again that the percolation transi-
tion on the backbone of our model is second order. Since for
H.1

2 one has positive correlations, high- or low-permeability
bonds cluster together, and as a result sample-to-sample fluc-
tuation of the permeability is not large. This means that, as
discussed above, the critical exponente of the permeability
can be accurately estimated from plots such as that shown in
Fig. 13. However, we also found that the same is true for

H, 1
2. An example is shown in Fig. 14, where we show the

logarithmic plot of the permeability of a 64364364 corre-
lated simple-cubic network versusp2pc for H50.35. Simi-
lar to Fig. 13, Eq.~1! is completely obeyed and no significant
deviation from it is observed. To check the accuracy of the
critical exponente estimated from figures such as 13 and 14,
we also estimated them by finite-size scaling discussed
above, which is believed to be the most accurate method of
estimating a critical exponent, if a precise estimate ofpc is
available. The results obtained by this method agreed com-
pletely with those obtained from figures such as 13 and 14.
Figure 15 shows the estimates of the critical exponente and
its dependence onH. Unlike random percolation for which
the exponente is largely universal~except for some special
cases@27#!, for our correlated percolation model the expo-
nente depends smoothly onH. This is similar to the results
of Prakashet al. @10#, who found that the critical exponentt
of the conductivity of their model depends on the parameter
z ~see above!. The implication of this nonuniversal behavior
of e is discussed below.

FIG. 11. The permeability of a correlated square network~solid
curve! with H50.8, and its comparison with that of a random
square network. In the correlated network the bonds with thehigh-
est permeabilities are progressively removed until the percolation
threshold is reached.

FIG. 12. The same as in Fig. 11, but for a simple-cubic network
with H50.2.

FIG. 13. Logarithmic plot of the permeabilityK of a 2563256
correlated square network withH50.9, vsp2pc . The straight line
is a guide to the eye.

FIG. 14. The same as in Fig. 13, but for a 64364364 simple-
cubic network withH50.35.
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To confirm that the exponente and the other percolation
exponents discussed below do actually depend onH, and
their apparent dependence onH is not the result of a cross-
over between two limiting cases, we carried out a careful
analysis of our permeability data. First, we changed the
rangeDp5p2pc in which the permeability data were fitted
to Eq. ~1!. We found that, provided thatDp is sufficiently
small ~roughly speaking, ifDp,1/Z, whereZ is the coordi-
nation number of the network!, the exponente is insensitive
to the range ofDp in which the fitting was done, as it must
be. Secondly, similar to finite-size scaling, there may be sig-
nificant correction-to-scaling terms to the power-law depen-
dence ofK on Dp, and instead of Eq.~1! one should write
K;(p2pc)

e@b11b2(p2pc)
2e11•••#, where e1 is a

correction-to-scaling exponent, and theb’s are constant.
Thus we fitted the permeability data for network sizesL.Lm
to this equation to see whethere still varies with H. We
found that the effect of correction-to-scaling terms is insig-
nificant, and obtained the same values ofe as before. Thus
we are confident that theH dependence of the exponents that
we find is not the result of a crossover effect, lack of preci-
sion in our data, or a finite-size effect.

Consider now a possible application of our correlated per-
colation model. The application we consider is flow through
field-scaleporous media, such as oil reservoirs and aquifers,
and estimating their effective permeability. The fact that the
permeability distribution and porosity logs of such porous
media appear to obey fGn and fBm statistics indicates that
flow in such porous media can be reduced to flow through
the sample-spanning cluster of the correlated percolation de-
scribed in this paper. The idea is that@28–31# in a heteroge-
neous medium with a broad distribution of the permeabilities
or flow conductances, a finite volume fraction of the system
has a small permeability or hydraulic conductance, whose
contribution to the overall permeability or conductivity is
very small. Thus one can eliminate such low permeability or
conductance regions of the system, i.e., set their permeability
or conductance to be zero, in which case one obtains a per-
colation system with long-range correlations. Although in
the original paper of Ambegaokar, Halperin, and Langer@28#
it was assumed that the conductances are exponentially

broad, computer simulations of Bermanet al. @32# indicated
that this idea is still very useful even if the conductance
distribution is relatively narrow. However, unlike the previ-
ous applications of this idea@29–32#, which were to porous
media withmicroscopicdisorder that were reduced toran-
dompercolation systems with largely universal scaling prop-
erties, in the present problem one has a field-scale porous
medium withmacroscopicdisorder that, as shown in this
paper, is reduced to a percolation system with nonuniversal
properties. Recent computer simulations of Moreno and
Tsang@33# and Herweijer and Dubrule@34# confirm the ap-
plicability of percolation to flow in field-scale porous media
with macroscopic disorder. These authors found that, if a 3D
porous medium is represented by a cubic tessellation of rect-
angular blocks whose permeabilities follow a distribution
F(K), then the flow paths are along only the regions with
large permeabilities. The volume fraction of such regions
was found to depend onF(K). This is precisely the essence
of the idea developed in@28–31#.

We can use this idea and our results in this paper to obtain
an estimate of the permeabilityK of a field-scale porous
medium with a permeability distributionF(K). Suppose that
Kc is the critical permeability such that all the permeabilities
less thanKc are set to be zero and, following@28–31#, the
permeabilities of the rest of the pore space are assigned the
same valueKc . Equation~1! tells that

K;Kc@p~K !2p~Kc!#
e, ~20!

wherep(K)5* K
`F(K)dK is the fraction of the regions of

the pore space having a permeability larger thanK. We need
to eliminatep(K)2p(Kc) from Eq. ~20!, since it cannot be
measured directly, and replace it with some measurable
quantity. Thus following Refs.@28–31# we maximize Eq.
~20! with respect to Kc , which yields p(K)2p(Kc)
5eKcF(Kc), implying that

K;eeKc
11e@F~Kc!#

e. ~21!

Therefore, given a permeability distributionF(K), we first
estimate the exponente and the percolation thresholdpc ,
from which the critical permeabilityKc is estimated. Then,
Eq. ~21! provides us with an estimate of the overall perme-
ability K of the pore space. In particular, if the distribution
F(K) of the porous medium gives rise to a nonuniversal
scaling law for the permeabilityK, in which the critical ex-
ponente depends on some parameter of the distribution, then
the dependence ofe on this parameter also has to be deter-
mined. If the permeability distribution obeys the statistics of
a fBm, then Figs. 7 and 12 give the desired dependence ofpc
~and thusKc! ande on H. Therefore in any practical appli-
cation one also has to determineH for a given field-scale
porous medium. Early analysis of Hewett and Behrens
@15,16# had indicated that for many rocksH.0.7. However,
more recent and careful studies@17–19,35# suggest that in
fact 0,H,0.5.

IV. SUMMARY AND DISCUSSION

Summarizing our results, some of the critical exponents
that characterize the scaling properties of our percolation
model depend at most weakly onH, the parameter that char-

FIG. 15. The dependence of the permeability exponente on H
in 2D ~circles! and 3D~triangles!. Arrows indicate the correspond-
ing values for random percolation.

3878 54MUHAMMAD SAHIMI AND SUMIT MUKHOPADHYAY



acterizes the nature of the correlations, while some others
depend smoothly and strongly onH. As a result, most scal-
ing properties of this percolation model arenonuniversal.

Another possible application of our model is@5# to dis-
persion in field-scale porous media. Dispersion, the unsteady
mixing of two miscible fluids displacing one another in a
porous medium, is caused by a chaotic velocity field in the
pore space. It can be modified by molecular diffusion which
transfers the solute~the displacing agent! out of the stagnant
regions of the pore space and the slow boundary layer zones
near the pore walls. Dispersion is important to enhanced re-
covery of oil, salt-water intrusion in coastal aquifers, pollu-
tion of groundwater flow, and several other phenomena
@2–4#. Dispersion inhomogeneousporous media is usually
modeled by the convective-diffusion equation~CDE!,

]C

]t
1v•“C5DL

]2C

]x2
1DT¹2

2C, ~22!

whereC is the solute concentration,v the average flow ve-
locity, DL the longitudinal dispersion coefficient~in the di-
rection of macroscopic flowx!, andDT and¹2

2 are the dis-
persion coefficient and the Laplacian in the transverse
~perpendicular to the macroscopic flow! directions, respec-
tively. An important characteristic of dispersion is the dis-
persivityaL5DL/v, which is the length scale above which a
description of dispersion by a CDE is valid. Description of
dispersion by a CDE assumes thatv, DL , DT , andaL are
independent of length scale and time, and has been reason-
ably successful for porous media atsmall length scales~of
order of at most a few meters! @3,4#.

However, there have been severalfield studies of disper-
sion @36–39# indicating thatDW L andaL are scale and time
dependent,aL;Ld andaL;tx, and thatDL depends linearly
on v and thus on the permeabilityK. HereL is the length
scale of the measurements or the distance from the source
~where the solute or the displacing fluid is injected into the
flowing fluid in the rock!. A nonuniversalx.0.5–0.6 has
been found@40–42# to provide a reasonable fit of the data.
Although various theories have been proposed@40–42#, up
to now, the anomalous dependence ofaL on L andt has not
found a completely satisfactory explanation. However, as
discussed above, if the rock permeabilities are distributed
according to a fBm, then the pore space in which flow and
dispersion take place is similar to the sample-spanning clus-
ter of the correlated percolation system studied here@43,44#.
It is then not difficult to show that@5,45#

aL;t1/~11u!, ~23!

whereu5(e2bB)/n, which means thatx51/~11u!, and thus
x is related to the critical exponents of our model.

We argue that it is thetwo-dimensionalcorrelated perco-
lation that is relevant to the interpretation of the field-scale
dispersion data, since such data are obtained at large dis-
tances from the source~up to several tens of kilometers!,
whereas the thickness of such porous media is at most a few
hundred meters, and therefore such porous media are long
and thin, and thus essentially two dimensional. Therefore
one has to use the critical exponents of our 2D percolation
with long-range correlations to estimateu and hencex. Our
results in this paper indicate that these exponents are nonuni-
versal, consistent with the field data that indicate thatx is
nonuniversal and varies from field to field. In fact, using our
results we estimate thatx.0.5–0.60 for 0,H,1, consistent
with the range of experimental data discussed above. We
thus propose that percolation with long-range correlations is
relevant to dispersion phenomena in field-scale porous media
and aquifers, and provides a rational and plausible explana-
tion for the nonuniversality of the dispersivity exponentx,
and how it may depend on the structure of the field-scale
porous media~i.e., on the value ofH that characterizes the
nature of the correlations!.

Another possible application of our percolation model is
to modeling the fracture network of heterogeneous rock. The
analysis of fracture surfaces and 3D fracture networks of
rock masses at large scales@46# indicates that the fracture
networks may have the structure of a percolation cluster.
Moreover, similar to our correlated percolation model, the
fracture networks of rock are dense, confirming the existence
of long-range correlations in the rock. We plan to explore
this possibility in future work.

These are just a few possible applications of our percola-
tion model with long-range correlations to some practical
problems. We hope that this paper will stimulate more work
in this interesting and, from a practical viewpoint, important
area.
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